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Sumroary 

\ 
A class of nonparametric tests based on the third quad- 

rant layer ranks has recently been studied by Woodworth fl31 

in connection with the problem of testing for independence in 

a bivariate distribution.  In the present work, exact one-sided 

rejection regions are tabulated for the normal score layer rank 

test which is asymptotically locally most powerful for positive 

dependence in the bivariate normal distribution. The cut-off 

points are tabulated for sample sizes n»4(l)9 and significance 

levels a«.10, .05, .025 and .01. Normal and Rdgeworth approxi- 

mations for the significance probabilities are also given. A 

simplified version of the normal score test is proposed and its 

rejection regions are tabulated. These tests are compared with 

the correlation coefficient test, Kendall's t test and Spear- 

man's rank correlation test for independence by means of Monte 

Carlo evaluation of power employing 10,000 trials from each of 

three different types of bivariate distributions. Also included 

is a brief description of the computing aspects of the problem 

that may prove useful in similar studies. ( \ 
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1.  Introduction 

Let Z.=(X.»Y^), i«l,2,...,n be a random sample from a bi- 

variate distribution having the continuous cumulative distri- 

bution function (cdf) P(x,y). The problem of testing for in- 

dependence between X and Y, that is, of testing the null hy- 

pothesis H :F(x,y)*G(x)H(y) against the alternatives of positive 

dependence has been studied extensively in the literature. The 

UMP unbiased test under the blvariate normal model is based on 

the sample correlation coefficient r. Various nonpararoetric 

tests have also been proposed. The two classical ones are the 

tests based on Spearman's rank correlation r and Kendall's t. 
9 

A unified treatment of the asymptotic distribution theory of 

these and other rank order tests has been given by Hajek and 

Sidak [6].  Lehmann [10] gave some mathematical characterizations 

of positive dependence and demonstrated that r and Kendall's t 

possess desirable properties for specific types of positive 

dependence. 

A new class of distribution-free tests of independence 

based upon the "3rd quadrant layor ranks" has been studied by 

Woodworth [13]. The 3rd quadrant layer rank of 2. is defined 

as the number of points (X.-X^Y.-Y^ , l<Jin, that lie in the 

closed 3rd quadrant. Let x(i)<x(2)<***<x(nl and set 

Z(i*"(X..wY,..)f i»l,2,,..,n where Y... is the Y-component of 

the vector having the jth smallest X-component.  The 3rd quad- 

rant layer rank (henceforth to be called simply "layer rank") 
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Mj) of 2(j) i« then the rank of Y^j among Y[ij'Yf2)' • • ^i jj * 

The class of layer rank statistics considered in [13] has 
n 

the structure T - T E U(j),j), where E (i,j), l<i<j<n is a 

triple sequence of constants representing the weight function 

associated with the layer ranks.  It includes Kendall's t as 

a special case as can readily be seen by choosing E {i,j)«i. 

Another important member is the normal score layer rank statistic 

(1.1)        T,;1' - | be 
n 

where c.^ECv!^) with V.(1,<.. ^V^^ an ordered sample of size 

j from the standard normal distribution and 

(1.2)      bnj -[  0 for j»l 

[Onj-^'1 X  cni  for 2^n: 

It is shown in [13] that for the alternatives of positive de- 

pendence in the bivariate normal family, the test which rejects 

H for large values of T* ' is asymptotically locally most 

powerful among all linear layer rank tests. 

Although the asymptotic properties like the Pitman and 

the Bahadur efficiencies of the layer rank tests were studied 

in [13],  no table of significance probabilities was given to 

aid in carrying out the tests and the only existing tables are 

for Kendall's t statistic [7,8].  In Section 2,  we provide a 

table of upper 10%, 5%, 2.5% and 1% points for T* ' for sample 
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sizes n=4(l)9 as well as the normal and Rdqeworth approximations 

to the significance probabilities. The handling of the dis- 

tribution of T^ ' is difficult due to the complicated form of 

sequence ^b .).  Analogously to the Kendall's t statistic, a 

(21 
simplified version T* ' of the normal score layer rank test is 

constructed from T^ ' by taking the b . identically equal to 1. 

Thus, 

(1.3) T^> - £ öiMi)   . 

12) A table of upper percentage points of T'  '   is also provided in 

Section 2. 

The asymptotic relative efficiencies of the tests r, r , t 

and T*  have been studied by Konijn [9], Bhuchongkul [2], 

Woodworth [13] and others. No information is, however, avail- 

able about their performance in small and moderate sample sizes. 

Computation of the exact power being extremely difficult, we 

present in Section 3 tables of the empirical power of all these 

(2) 
tests and T'  under three bivariate distributions. From the n 

enormous number of samples (10,000) used in the study, one 

would expect that the empirical values are fairly close to the 

exact power for the alternatives considered. 
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2.  Percentage points of T:  and T* 

Let £«(£(1)ri(2),...,i(n)) denote the vector of layer ranks 

of (Z^.wZ,..,... ,2..) and ^U) the set of all possible layer 
«li; "Kl} ■"in; 

rank vectors. Under H0, the different components of £ are mutually 

independent and £(j) is uniformly distributed over the set of 

integers {lr2y...#j}, l£j^n (cf. Lemma 1.1 of Brandoff-Nielsen 

and Sobel [1]). Thus the nl vectors involved in the set *£(£) 
MB 

are equally likely under H . . Determination of the significance 

points of a layer rank statistic T requires generation of the 

set *£(£), calculation of the values of T over the set and then 
- n 

the ordering of these values. 

Certain techniques have made it possible to substantially 

reduce the computing time. Both T^ ' and T* ' are handled 

simulteneously, thus avoiding regeneration of '€(£). Secondly, 
n ' 

it is found that an auxiliary statistic U(£)- \  £(j) (this is 
n   j-1 

equivalent to Kendall's t) helps to generate the layer rank 

vectors £ leading to the high values of T* ' and T^  due to - n      n 

the monotonic nature of the weight functions involved. This 

is made precise in the following lemma. 

Lemma 2.1. For integers r, n<r<n(n+l)/2# define the subsets 

S(r) of •€(£) by 

(2.1) S(r) - (£ : Uft) ■ r} n • 

I 

Then for i«lr2 



(2.2) max   TJ^U) > max    T^l) (1) . 
US(r)  n   •   fc€S(r-l) n   ' 

Proof. Consider, in particular, T^ f (I) - [ bnjcj,jl(j)• Por 

every t cS(r-l), there exists a layer rank vector t-cS(r) such 

that for some integer i {lli^n) , l0(i)+l-l0(i) and 40(j)-t0(j) 

for all j-l,2,...#n with J+l. The sequence {b^} is non-n..gative 

and non-decreasing in j. Also, for each fixed j, the sequence 

(c^) is increasing in i. This entails T^ (40) < T^l) {l0) 

and hence (2.2) follows for i-1. The «ame argument applies 

for T^2^ and this completes the proof, 
n 
To avoid generating all the nl elements of ^(M» the 

layer rank vectors are generated in decreasing order of ünU)' 

Por instance with n«5, we start from S(15)-{(1»2,3,4,5)) and 

then generate the set S(14)-{(1,2,3,4,4), (1,2,3,3,5), (1,2,2,4,5) , 

(1,1,3,4,5)} followed by the set 8(13) and so on. • Por each n and 

each test statistic TrJ
i), a reference number Ci is chosen which 

is sure to lie below the 10% cut off point (hence also below the 5%, 

2.5% and 1% points). The sets S(r) are generated in decreasing 

order of r and for each max 
leS(r) ^ 

{I)   is computed. As soon as 

this becomes less than min^wC,)» the program is terminated. 

(2.2) ensures that the set of all the layer rank vectors gen- 

erated under this scheme contain the critical regions of the 

desired sizes. 

Even with the above technique, more than nl/10 values of 

T^* are calculated and these are to be ordered. The best 
n 

ordering program requires computing time proportional to NlogN, 
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where N numbers are being ordered.  An oven more serious pro- 

blem is the lack of sufficient storage space. With n=9, for 

instance, about 45,000 values are to be ordered for each 

statistic.  It is frequently experienced that the computation 

of the test statistics takes much less computer time than the 

printing out of the computed values. The program is therefore 

run in two stages. In the first stage, the computed values of 

each statistic are grouped into a histogram having 1,000 cells. 

The intervals containing the 'four percentage points under con- 

sideration are located.  In the final run, the values within 

these four intervals are ordered and printed out and from these, 

the exact cut off points are determined. About 15 minutes wem 

required for the case n«9. 

The 10%, 5%, 2.5% and 1% upper cut off points of T* ' and 
(2) T' ' for n»4(l)9 are presented in Table 1.  In some cases the 

nominal n  can only be attained through randomization on the 

boundary. An entry within braces represents the nonrandomized 

significance probability (in percentage) corresponding to the 

cut off point marked by an asterisk immediately above it. Tha 

number immediately below is the next lower value of the test 

statistic which is to be randomized. For instance, with n»4, 

a«.10, the test based on T   is the randomized test:  reject n 
H0 with probability 1 if TIJ1,>1.8260 and reject Ho with pro- 

bability   (.10-1/12)   if Trj
1)»1.8122. 

I 
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In order to inveatiqate the accuracy of the larqe sample 

approximation, we evaluate both the normal approximation and the 

Edgeworth expansion containing the first non zero correction term. 

The latter expansion assumes the form (see Cramer [4]  pp. 88) 

(2.3) 
T r 

W        nriL(4i) 
♦ (4)(x) + 0(n"2) 

2n 

(4) where * is the standard normal cdf, «v ' is its fourth derivative, 

o*(T ) is the variance and nF' is the vth cumulant of Tn under 

the null hypothesis. By symmetry of the null distribution the 

odd cumulants are zero for both T* '  and T'J n      n For T*  , we have n 

4n 

(2.4) 

n"1 ! bj Ij"1 I    c5k-3i-
2( | c]/]. 

j-1 nJ   lc«l J*     k-l :,K 

1-1 n:,   k-1 DK 
o2(TlJ

J•,) - nF o n 

(2) The corresponding expressions for T^ ' are obtained by setting 

the b a'B equAi to one. The results appear in Table 2 and they nj 
show that both approximations are very good even for small 

samples. 
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3.  Some dependence alternatives and empirical power 

The following five tests of independence are included in 

the present study for the evaluation of their relative perfor- 

mance in small samples under specific types of dependence, 

(i)       The correlation coefficient r. 

(li)     Spearman's rank correlation r,, ■ 12(n -n)"    T  (j-—5—)Rjr 
8 j-1   z  J 

where Rj,,.,,R are the ranks of Yn 1 »• • • »Yrni • 

(iii) Kendall's statistic t- U?)!"1 f  U(j)-(j+l)/21. 
2   j-1 

(iv)  The asymptotically locally most powerful normal score 

layer rank test T(1) defined by (1.1) and (1.2). 

(2) (v)   A simplified normal score layer rank test T' ' defined in 

(1.3). 

Three sample sizes n«5,7,9 and two significance levels 

a«.05 and .025 are considered for each test.  The one-sided 

cut-off points of T* ' and T' ' are obtained from Table 1, 

those of r and Kendall's t are read from [8] and for the cut- s 

off points of r, we use the fact that the null distribution of 

(n-2)1/2r/(l-r2)1/2 under normality is student's t with (n-2) 

degrees of freedom. 

The following three essentially different types of positive 

aependence are included in the study. 

(a) X and Y have the bivariate normal distribution with positive 

correlation coefficient p. The tests r and T(  are optimal for 

this family in two different senses. It is Interesting to in- 

vestigate the comparison of the two as well as the manner in 
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which they compare with the other three tests which are not 

optimal for this family. All the five tests are location and 

scale invariant. Without loss of generality we take the means 

to be zero, variances arbitrary and p».l, .3, ,5,   .7 and .9 to 

cover evenly the whole range of positive dependence. 

(b) A model of positive dependence which often arises in factor 

analysis: 

(3.1) X « V+0Z 

Y • W+9Z 

where V, W and Z are independent random variables and 0 is the 

parameter of positive dependence.    The null hypothesis is equi- 

valent to H  :0=0.    This model was considered by Bhuchongkul  [2] 

and also by llajek and Sidak   [6]   in the derivation of locally 

optimal rank tests for independence.    The particular ease of V, 

W and Z b&ing independent uniform random variables on  (0,1)  is 

treated here.    The correlation coefficient between X and Y is 
2 2 p«0 /(1+0 )   > 0.    The values of 0 are selected to yield    alter- 

natives which correspond to the values of p in case  (a). 

(c) The bivariate exponential distribution introduced by Marshall 

and Olkin  [11].    It is essentially a three parameter family 

with the cdf determined from 

(3.2)       P(X>x,Y>y)  « exp(-X1x-X2y-X12raax(xry)l, 

x,y>0f   X.X),  X2>0,  X12>0. 

« 
■ 
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The X and Y marginals are univariate exnonential with means 

(X +X12)  and (X2+A.2)  respectively and the correlation co- 

efficient is given by psX.-(X.+X.+X,,)" •  Marshall and Olkin 

[11] showed that the distribution (3.2) arises very naturally 

in certain life testina situations.  It has an interesting 

feature in that although the marginals have exponential distri- 

butions, the bivariate distribution has a singular part in 

addition to an absolutely continuous part.  To reduce the number 

of parameters, we consider the case of identical marginals 

X.»X2*X , say.  Since all the tests are scale invariant, their 

powers would depend only on G'A.^/X and hence, without loss of 

generality, we take ^*1 and ^i,*0,  Then we have p"0/(0+2). 

The alternatives 0 are again chosen so as to have the same values 

of p as mentioned in (a). 

10,000 samples are generated in each case for the evaluation 

of empirical power.  To reduce the time for generating the 

samples and also to provide a possibly better basis for comparison, 

nine pairs of observations (X.,Y.) are generated each time.  The 

first five are used for the case n«5, the first seven for the 

case n=7 and all nine for the case n»9. As a preliminary to 

generating the (X,Y) observations, independent uniform (0,1) 

randan numbers are first generated following the scheme dis- 

cussed in Moshman [12]. Appropriate transformations are then 

used to convert to the distributions specified in (a), (b) and 

(c). Specifically, let Z,, Z2 and Z. be three independent 

uniform (0,1) random variables and set 

■ 4 

ä! a 

 ■ 
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(3.2)     X(a)   =   (-21n7(1)
1/2  sin(27r7.2)+D(l-p2)"1/2(-21nZ1)1/2cos(2TrZ2) 

Y(a)   »   (-2107^)1/2  COS(2TTZ2), 

(3.3)     X(b)   =  Z1+(p/(l-p)l1/2Z3 

Y(b)   =  Z2+[p/(l-p)l1/2Z3 

and 

(3.4)     X(c)  = mint-lnd-Zj) ,  - (l-p)/(2p) ln(l-Z3) J 

Y(c)  = min[-ln(l-Z2) ,  - (l-p)/(2p)ln(l-Z3]. 

It is easy to verify that (X(a)
# Y

(a)) is a bivariate 

normal, (X(b), y(b,) conforms to the model (b) , (X(c), Y(c)) has 

a  bivariate exponential distribution and the correlation in 

each case is p. The transformation (3.2) is due to Box and 

Müller [3] and (3.4) follows from the results in [11]. 

Independent sets of uniform random numbers are used for 

each of the three different models. However for each model, 

the same set of uniform random numbers are used to generate 

each set of the (X,Y) observations corresponding to an alter- 

native p. The observations in any set are obtained by merely 

changing the value of p in the transformations introduced above. 

The number of rejections of H out of a total of 10,000 samples, 

are presented in Table 3 for model (a), Table 4 for model (b) 

and Table 5 for model (c).  Hence the entries in these tables 

need only be divided by 10,000 to yield the estimated power. 

Finally, the number of rejections are also given for p«0 which 

is equivalent to the hypothesis of independence in each model. 



. 

15 

This provides  a check on the accuracy of the empirical  type 

I error. 

  , 
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4.  Remarks and Conclusions 

It was felt that the generated data were quite reliable since 

the histograms of the univariate marginal observations were well 

within the limits of the goodness of fit tests in each case. 

Moreover, to check the extent of internal variability of the re- 

sults, the program was run in ten groups of 1,000 samples each. 

The variation of the results of empirical power from group to 

group was found to be quite small. This observation enhances 

the reliability of the pooled empirical power presented in the 

tables of Section 3. Further, the results for r were compared 

with selected values of the exact power under normal alternatives 

(see David [5]) and were found to agree within + .01. 

Among the five tests included in the study, all but the 

correlation coefficient test r are distribution-free. As men- 

tioned earlier, the cut-off points for r were tak*n from student's 

t distribution which holds only under the bivariate normal model. 

The empirical significance probabilities for r in Table 3 are 

as close to the nominal levels as they should be. Curiously 

enough, they also tend to agree very closely in Table 4. The 

underlying model in this case is the uniform distribution of 

(X,Y) on the unit square. Thus, the significance levels for 

the parametric test r seem to be robust with respect to the 

uniform distribution. However, this property does not hold for 

the bivariate exponential model. This is evident as one ex- 

amines the empirical levels of r in Table 5. 

 ,  
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Finally, we make a comparative study of the empirical powers 

of the five tests under consideration. Regarding the bivariate 

normal model (a) , there is clear indication that r has substantially 

higher power than all the other tests (see Table 3).  r is even 

noticeably better than the optimal layer rank test T ', al- 

though asymptotically T        has Pitman efficiency 1 relative to r. 

The r test also seems to be superior to all the others for the 

model (b).  However, for the bivariate exponential alternatives, 

not only are its significance levels seriously distorted, but 

its power tends to lag behind those of all other tests.  Thus 

among the five tests, the r test is the best for the models (a) 

and (b), but it is the poorest for model (c). The simplified 

12) normal score layer rank test Tv ' , on the other hand, seems to 

have the highest power among all five for the model (c),  al- 

though it has the lowest powers for (a) and (b).  The difference 

among the performances of T  , r and t are somewhat less pro- 
8 

nounced.     Asymptotically, r    and t have relative efficiency 1 
9 

for all parent bivariate distributions and their efficiency re- 

il) 2 
lative to T* ' is (3/TT) «.912 for the bivariate normal model 

(a). In Table 3, their empirical powers are found to be quite 

close to one another for all the alternatives p.  For the model 

(b), the Spearman test r seems to have more power than both 
S 

T^  '  and t.     The difference,   though moderate,  is noticeable for 

all n,  all alternatives p and for both the values of a.    On 

the other hand,  r    has slightly lower power than T(  '   and t 
S 

for the model   (c). 
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